Calculating excess risks
Comp_Exrisk.RdCalculate the excess risk from a risk model under a specified exposure scenario.
Arguments
- exposure
a list object that specifies the exposure scenario, which contains
agex(a single value or a vector for age(s) at exposure), 'doseGy' (a single value or a vector of dose(s) in Gy), and 'sex' (1 or 2 for male or female).- riskmodel
a list object that specifies the risk model, which contains two list objects named
errfor excess relative rate model and 'ear' for excess absolute rate model, each of which contains a vector 'para' for model parameter estimates and a function 'f' to compute the excess risk given a parameter vector and exposure information (e.g., dose, age at exposure, sex, attained age).- option
a list object that specifies optional settings for risk calculation, which contains an integer value 'maxage' for the maximum age to follow up and a value 'err_wgt' for the weight for risk transfer (1=err, 0=ear).
- per
an integer value for the risk denominator (default=1).
Examples
# The following examples use default data provided in CanEpiRisk package
# for riskmodels (LSS_mortality and LSS_incidence) derived from Life Span Study
# and baseline mortality and incidence rates for WHO global regions (Mortality and Incidence).
# Example 1: allsolid mortality, Region-1, female, 0.1Gy at age 15, followed up to age 100, LSS linear ERR
exp1 <- list( agex=5, doseGy=0.1, sex=2 ) # exposure scenario
ref1 <- list( baseline=Mortality[[1]]$allsolid, # baseline rates
mortality=Mortality[[1]]$allcause ) # all-cause mortality
mod1 <- LSS_mortality$allsolid$L # risk model
opt1 <- list( maxage=100, err_wgt=1, n_mcsamp=10000 ) # option
CER( exposure=exp1, reference=ref1, riskmodel=mod1, option=opt1 ) * 10000 # cases per 10,000
#> mle mean median ci_lo.2.5% ci_up.97.5%
#> 221.1383 227.0030 221.3601 147.4071 337.7613