Skip to contents

LSS mortality risk models for 9 cancer types.

Usage

LSS_mortality

Format

A list object of :

allsolid

a list object which contains risk model information (see Details)

esophagus

a list object which contains risk model information (see Details)

stomach

a list object which contains risk model information (see Details)

colon

a list object which contains risk model information (see Details)

liver

a list object which contains risk model information (see Details)

lung

a list object which contains risk model information (see Details)

bladder

a list object which contains risk model information (see Details)

breast

a list object which contains risk model information (see Details)

leukaemia

a list object which contains risk model information (see Details)

Source

IARC

Details

The list object for each risk model contains the 9 site-specific cancer mortality risk models derived from Life Span Study (allsolid, esophagus, stomach, colon, liver, lung, bladder, breast, leukaemia`).

Each site-specific data.frame contains information for the risk model (a vector of parameter estimates para, a matrix of variance-covariance matrix of parameter estimates var and a function to calculate the risk f).

References

Ozasa, K., Y. Shimizu, A. Suyama et al. Studies of the mortality of atomic bomb survivors, Report 14, 1950-2003: an overview of cancer and noncancer diseases. Radiat Res 177(3): 229-243 (2012).

See also

LSS_incidence, plot_riskmodel()

Examples

 names(LSS_mortality)   # Sites for which LSS mortality risk models are available
#> [1] "allsolid"  "esophagus" "stomach"   "colon"     "liver"     "lung"     
#> [7] "bladder"   "breast"    "leukaemia"
 names(LSS_mortality$allsolid)    # Available dose response models
#> [1] "L"  "LQ"
 LSS_mortality$allsolid$L$err     # Linear ERR model for all solid cancer motality
#> $para
#> [1] -0.861334 -0.346062 -0.857491  0.344098
#> 
#> $var
#>        colon10        ew30      lage70         msex
#> 1  0.014180600  0.00333207  0.01639360 -0.000677273
#> 2  0.003332070  0.00662021 -0.01588550 -0.001016880
#> 3  0.016393600 -0.01588550  0.17911000  0.003545970
#> 4 -0.000677273 -0.00101688  0.00354597  0.007714090
#> 
#> $f
#> function (beta, data, lag=5) {
#>               exp(beta[1])*data$dose * exp(beta[2] * (data$agex - 30)/10 + beta[3] * log(data$age/70)) *
#>            (1 + c(-1, 1)[data$sex] * beta[4]) * (data$age - data$agex >= lag )
#>        }
#> <bytecode: 0x55c09bc297f8>
#> <environment: 0x55c09bc26838>
#> 
 LSS_mortality$allsolid$L$ear     # Linear EAR model for all solid cancer motality
#> $para
#> [1] -5.9371100 -0.2134750  3.3845100  0.0676994
#> 
#> $var
#>        colon10        ew30      lage70        msex
#> 32  0.01417250  0.00242883  0.01582030 -0.00474069
#> 33  0.00242883  0.00512198 -0.01226210 -0.00002250
#> 34  0.01582030 -0.01226210  0.13388100 -0.00584042
#> 35 -0.00474069 -0.00002250 -0.00584042  0.00931054
#> 
#> $f
#> function (beta, data, lag=5) {
#>          exp(beta[1])*data$dose * exp(beta[2] * (data$agex - 30)/10 + beta[3] * log(data$age/70)) *
#>            (1 + c(-1, 1)[data$sex] * beta[4]) * (data$age - data$agex >= lag )
#>        }
#> <bytecode: 0x55c09bc2fa60>
#> <environment: 0x55c09bc26838>
#> 

 LSS_mortality$leukaemia$LQ$err   # Linear-quadratic ERR model for leukaemia motality
#> $para
#>   bm_dose bm_dosesq    lage55 
#>  1.379118  1.328138 -1.634167 
#> 
#> $var
#>                bm_dose   bm_dosesq       lage55
#> bm_dose    0.511572695 -0.16656731 -0.005417054
#> bm_dosesq -0.166567310  0.15938148  0.031442880
#> lage55    -0.005417054  0.03144288  0.146357021
#> 
#> $f
#> function( beta, data, lag=2 ){
#>                    tsx <- data$age-data$agex
#>                     ( beta[1]*data$dose + beta[2]*data$dose^2) * 
#>                         exp( beta[3]*log(data$age/55)  ) * (data$age - data$agex >= lag )
#>            }
#> 
 LSS_mortality$lung$L$err         # Linear EAR model for lung cancer motality
#> $para
#> [1] -0.3123940 -0.0674953  0.1087770  0.4832490
#> 
#> $var
#>         colon10         ew30       lage70         msex
#> 21  0.032047300 -0.000480852 -0.006232080  0.002104700
#> 22 -0.000480852  0.024757400 -0.100574000 -0.000947684
#> 23 -0.006232080 -0.100574000  1.553010000 -0.000694346
#> 24  0.002104700 -0.000947684 -0.000694346  0.022580600
#> 
#> $f
#> function (beta, data, lag=5) {
#>               exp(beta[1])*data$dose * exp(beta[2] * (data$agex - 30)/10 + beta[3] * log(data$age/70)) *
#>            (1 + c(-1, 1)[data$sex] * beta[4]) * (data$age - data$agex >= lag )
#>        }
#> <bytecode: 0x55c09bc5c8b8>
#> <environment: 0x55c09bc5d648>
#> 

 # Plotting LSS all solid cancer mortality risk model
 plot_riskmodel( rm=LSS_mortality$allsolid$L, title="LSS all solid cancer mortality, Linear",  leg_pos=c(0.4, 0.95) )

 # Plotting LSS Leukaemia incidence risk model
 plot_riskmodel( rm=LSS_incidence$leukaemia$LQ, title="LSS leukaemia incidence", ymax=c(1.5, .3), add=c(0.01,0) )
#> Warning: Removed 6 rows containing missing values or values outside the scale range
#> (`geom_line()`).